skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rubin, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a simulation of the time-domain catalog for the Nancy Grace Roman Space Telescope’s High-Latitude Time-Domain Core Community Survey. This simulation, called the Hourglass simulation, uses the most up-to-date spectral energy distribution models and rate measurements for 10 extragalactic time-domain sources. We simulate these models through the design reference Roman Space Telescope survey: four filters per tier, a five-day cadence, over 2 yr, a wide tier of 19 deg2, and a deep tier of 4.2 deg2, with ∼20% of those areas also covered with prism observations. We find that a science-independent Roman time-domain catalog, assuming a signal-to-noise ratio at a max of >5, would have approximately 21,000 Type Ia supernovae, 40,000 core-collapse supernovae, around 70 superluminous supernovae, ∼35 tidal disruption events, three kilonovae, and possibly pair-instability supernovae. In total, Hourglass has over 64,000 transient objects, 11,000,000 photometric observations, and 500,000 spectra. Additionally, Hourglass is a useful data set to train machine learning classification algorithms. We show that SCONE is able to photometrically classify Type Ia supernovae with high precision (∼95%) to az> 2. Finally, we present the first realistic simulations of non-Type Ia supernovae spectral time series data from Roman’s prism. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. null (Ed.)
  4. Abstract We construct a physically parameterized probabilistic autoencoder (PAE) to learn the intrinsic diversity of Type Ia supernovae (SNe Ia) from a sparse set of spectral time series. The PAE is a two-stage generative model, composed of an autoencoder that is interpreted probabilistically after training using a normalizing flow. We demonstrate that the PAE learns a low-dimensional latent space that captures the nonlinear range of features that exists within the population and can accurately model the spectral evolution of SNe Ia across the full range of wavelength and observation times directly from the data. By introducing a correlation penalty term and multistage training setup alongside our physically parameterized network, we show that intrinsic and extrinsic modes of variability can be separated during training, removing the need for the additional models to perform magnitude standardization. We then use our PAE in a number of downstream tasks on SNe Ia for increasingly precise cosmological analyses, including the automatic detection of SN outliers, the generation of samples consistent with the data distribution, and solving the inverse problem in the presence of noisy and incomplete data to constrain cosmological distance measurements. We find that the optimal number of intrinsic model parameters appears to be three, in line with previous studies, and show that we can standardize our test sample of SNe Ia with an rms of 0.091 ± 0.010 mag, which corresponds to 0.074 ± 0.010 mag if peculiar velocity contributions are removed. Trained models and codes are released at https://github.com/georgestein/suPAErnova. 
    more » « less
  5. Abstract We apply the color–magnitude intercept calibration method (CMAGIC) to the Nearby Supernova Factory SNe Ia spectrophotometric data set. The currently existing CMAGIC parameters are the slope and intercept of a straight line fit to the linear region in the color–magnitude diagram, which occurs over a span of approximately 30 days after maximum brightness. We define a new parameter,ωXY, the size of the “bump” feature near maximum brightness for arbitrary filtersXandY. We find a significant correlation between the slope of the linear region,βXY, in the CMAGIC diagram andωXY. These results may be used to our advantage, as they are less affected by extinction than parameters defined as a function of time. Additionally,ωXYis computed independently of templates. We find that current empirical templates are successful at reproducing the features described in this work, particularly SALT3, which correctly exhibits the negative correlation between slope and “bump” size seen in our data. In 1D simulations, we show that the correlation between the size of the “bump” feature andβXYcan be understood as a result of chemical mixing due to large-scale Rayleigh–Taylor instabilities. 
    more » « less
  6. We present details on a new measurement of the muon magnetic anomaly, a μ = ( g μ 2 ) / 2 . The result is based on positive muon data taken at Fermilab’s Muon Campus during the 2019 and 2020 accelerator runs. The measurement uses 3.1 GeV / c polarized muons stored in a 7.1-m-radius storage ring with a 1.45 T uniform magnetic field. The value of a μ is determined from the measured difference between the muon spin precession frequency and its cyclotron frequency. This difference is normalized to the strength of the magnetic field, measured using nuclear magnetic resonance. The ratio is then corrected for small contributions from beam motion, beam dispersion, and transient magnetic fields. We measure a μ = 116 592 057 ( 25 ) × 10 11 (0.21 ppm). This is the world’s most precise measurement of this quantity and represents a factor of 2.2 improvement over our previous result based on the 2018 dataset. In combination, the two datasets yield a μ ( FNAL ) = 116 592 055 ( 24 ) × 10 11 (0.20 ppm). Combining this with the measurements from Brookhaven National Laboratory for both positive and negative muons, the new world average is a μ ( exp ) = 116 592 059 ( 22 ) × 10 11 (0.19 ppm). Published by the American Physical Society2024 
    more » « less
  7. Abstract A large fraction of Type Ia supernova (SN Ia) observations over the next decade will be in the near-infrared (NIR), at wavelengths beyond the reach of the current standard light-curve model for SN Ia cosmology, SALT3 (∼2800–8700 Å central filter wavelength). To harness this new SN Ia sample and reduce future light-curve standardization systematic uncertainties, we train SALT3 at NIR wavelengths (SALT3-NIR) up to 2μm with the open-source model-training softwareSALTshaker, which can easily accommodate future observations. Using simulated data, we show that the training process constrains the NIR model to ∼2%–3% across the phase range (−20 to 50 days). We find that Hubble residual (HR) scatter is smaller using the NIR alone or optical+NIR compared to optical alone, by up to ∼30% depending on filter choice (95% confidence). There is significant correlation between NIR light-curve stretch measurements and luminosity, with stretch and color corrections often improving HR scatter by up to ∼20%. For SN Ia observations expected from the Roman Space Telescope, SALT3-NIR increases the amount of usable data in the SALT framework by ∼20% at redshiftz≲ 0.4 and by ∼50% atz≲ 0.15. The SALT3-NIR model is part of the open-sourceSNCosmoandSNANASN Ia cosmology packages. 
    more » « less
  8. A public deep and wide science enabling survey will be needed to discover these black holes and supernovae, and to cover the area large enough for cosmic infrared background to be reliably studied. This enabling survey will find a large number of other transients and enable supernova cosmology up to z 5. 
    more » « less